
Towards Securing Client-Server Connections against
Man-in-the-Middle Attacks

Mihai ORDEAN and Mircea GIURGIU
Communications Department

Technical University of Cluj-Napoca
28 Memorandumului Street, Cluj-Napoca, Romania

Email: {mihai.ordean, mircea.giurgiu}@com.utcluj.ro

Abstract—This paper presents the design concept for an
authentication string that makes use of the server’s public key
and provides client’s authenticity through its password without
the need of a client side certificate or a second channel. Successful
strategies for preventing man-in-the middle attacks are currently
relying either on two channel/two factor authentication or two-
way encryption. Both these strategies have their downsides, the
first one requires users to carry a physical device for authentica-
tion and the second requires all the devices that connect to the
server have encryption certificates.

Index Terms—authentication: man-in-the-middle attack, con-
nection security

I. INTRODUCTION
The authentication process represents the gateway into any
secure system. It is the process that links the real life person
to its on-line avatar. Manny attacks target the process of
authentication because it is one of the easiest methods of
gaining access to a secure system under false pretenses. The
most widespread mode of authenticating is the password, but
unfortunately it is also the least secure. Because passwords
usually have low entropy [1] they are usually relatively easy
to discover using exhaustive search attacks.

To increase the security of the authentication process a
secure connection is usually established between the connect-
ing parties (i.e. client and server). In addition to providing
encryption the process of creating the secure connection also
has the ability to confirm the identity of the parties through
the use of the Public Key Infrastructure (PKI). PKI however
require mutual trusting of the certificate authority by all the
parties involved in the communication and are subject to
man-in-the-middle (MITM) attacks [1]. Additional methods to
prevent MITM attacks use secondary transmission channels
(e.g. mobile SMS messages), two-factor authentication (e.g.
one time pads) or two-way encryption, but methods like the
two-way encryption are difficult to implement and multi-factor
authentication often requires possession of physical devices,
and even then the credentials can be spoofed [1].

The PAKE protocol [2], [3], [4], [5], [6] represents an
alternative to the PKI, but the current standard for the Internet
remains the PKI.

This article proposes a method that uses the PKI infras-
tructure to implement some of the functionality of the PAKE
authentication. The method describes the creation of an au-
thentication string that becomes unusable in case of tampering

or hijacking by a would-be attacker. By using this authentica-
tion string in a client-server authentication process the client
is assured that an attacker cannot retrieve its password. The
server is also assured that it is granting access to the legitimate
client and not to a proxy client represented by the attacker.

The following sections detail the proposed concept. Section
II analyzes the current problem of the MITM attack and
its methods of deployment. Section III details the creation
of the authentication string, while different attacks and their
efficiency are being discussed in section IV.

II. THREAT MODEL

A man-in-the-middle attack consists of an attacker interposing
between two communicating parties in order to eavesdrop or
control the communication. This attack is usually directed
at a client-server communications with the purpose of either
obtaining authentication credentials or performing tasks in
the client’s name. Figure 1 describes an attack targeting user
credentials. It is assumed that the attacker already knows the
server’s public key and the password alphabet. The password
alphabet is referred as such to show applicability to alternate
methods of authentication (e.g. visual authentication). The
other assumption that is made is that the attacker does not
know, nor can obtain the server’s private key. The users
password is also considered unknown for the attacker because
it represents the objective of the attack.

Usually the attacker will proceed using one of the following
variants:

1) Attempt to establish two secure connections: one with
the server as a client and another one with the client
posing as the server. Data can be modified in real-time
for this case.

2) Attempt to pose as the server to the client in order to
obtain targeted data which can be used at a later time.
Data can be processed in a more extensive manner (i.e.
exhaustive search attack).

Figure 1 presents the attacker with two simultaneous secure
connections established, each with its own pair of keys. In
one connection, with the client, the attacker assumes the role
of the server and is able to trick the client into believing
its legitimacy. In the other connection, with the server, the
attacker poses as a normal client. The attacker is able to pose

mailto:mihai.ordean@com.utcluj.ro
mailto:mircea.giurgiu@com.utcluj.ro

E
n

cr
y

p
te

d

C
o

n
n

ec
ti

o
n

E
n

cr
y

p
te

d

C
o

n
n

ec
ti

o
n

Internal Data Transfer

Attacker

Attacker knows:

- Server Public Key

- Password Alphabet

Attacker doesn't know:

- Server Private Key

- Password

Attacker

Public Key

Server

Attacker Private Key Server Public Key

Server

Private Key

P
A

IR

P
A

IR

Client

Figure 1: Man-in-the-middle attack diagram.

as the client to the server because the system does not use
client identification methods (certificates, tokens).

The Internal Data Transfer process describes the link be-
tween the two connections. This process can be performed
either in real-time mode where the attacker actively relays
client’s data to the server, or in off-line mode where the
attacker records data (i.e. user’s credentials) from the client
and uses it at a later time.

Because each connection is secure, and the attacker success-
fully tricked the user into accepting its own certificate, both
the client and the server think they are communicating with
the intended party. The attacker, however, is able to read all
communications. The following section proposes a method for
creating an authentication string that becomes unusable even
if intercepted by a listening attacker such as the one presented
in figure 1.

III. AUTHENTICATION MODEL

The authentication process involves creating an authentica-
tion string using: the server’s public key, a random and unique
connection ID, and the user’s password.

The full authentication process (figure 2) starts with the
client requesting a connection to the server. The server sends
a unique connection ID and exchanges keys with the client.
Using the obtained public key and the connection ID the
password is constructed in the following manner:

EncPass = CPbK(Hash(PWD‖CID‖CPbK)) (1)

where:
‖ represents concatenation,
CPbK(x) is the encryption of the value x with the
active connections public key,

Hash(x) is the output of a hash function applied on
the value x,
EncPass is the encrypted password,
CPbK is the Base64 encoding of the active connec-
tions public key,
PWD is the user’s password,
and CID is the received connection ID encoded in
Base64.

1. Client requests a

connection. 2. Server responds with

the server public key, a

random and unique

connection ID and the

password alphabet.

3. Client computes a

hash with: the public

key used in the active

connection, unique

connection ID and

user’s password.

4. Client uses the

public key of the

connection to encrypt

the hash which is send

back to the server as

the authentication

package.

6. If hashes match

client is authenticated.

6. If hashes do not match

connection is terminated.

Client Server

5. Server calculates a

hash from its own public

key, the connection ID

issued and the password

stored in the database.

Figure 2: Client-server interaction during the authentication
phase.

The encrypted password (i.e. EncPass) created from the con-
structed hash encrypted with the active connection public key
is sent back to the server. The server is able to compute the
encrypted hash from its own data, independent of the user,
having the self-generated connection ID, its own public key
and the password from the user database. Furthermore the
server is also able to decrypt the received encrypted password
(i.e. EncPass) using its private key and check for a match
between the two computed hashes. In the event of a miss-
match access the connection is terminated, otherwise the user
is successfully authenticated.

IV. ATTACK EVALUATION

Once a successful MITM attack is in place the actual
attack can take two forms: either passively eavesdrop on

the communication between the client and the server and
save useful data for further use, or actively take over the
connection and relay communications between the two. During
this relaying real-time modifications of the data transmitted
can be performed. The two attacks forms are described in
figures 3 and 4.

A. MITM Proxy Attack

Attacker

Server
Attacker Private Key

(APvK)

Server Public Key

(SPbK)

Client
E

n
c.

C
o

n
n

.

E
n

c.

C
o
n

n
.

3B. Attacker extracts =

Hash(PWD||CID||APbK)

Connection

Denied

1A. Request Conn.

2A. Receive ID
Connection ID

(CID)

In
te

rc
ep

te
d

 C
o
n

n
ec

ti
o
n

 1

3C. PASSWORD=

SPbK(Hash(PWD||CID||APbK))

In
te

rc
ep

te
d

 C
o
n

n
ec

ti
o
n

 2

4. Password expected:

SPbK(Hash(PWD||CID||SPbK))

3A. PASSWORD =

APbK(Hash(PWD||CID||APbK))

Server Private Key

(SPvK)

Attacker Public Key

(APbK)

Figure 3: Real-time MITM proxy attack.

Figure 3 describes a MITM attack that actively modifies and
relays data from the client to the server. In this scenario the
attacker successfully represents itself as a server to the client
by sending its own public key enabling the decryption of the
data transmitted by the client. In relation with the server the
attacker poses as a normal client and hopes to transmit data
received from the client, after it has been processed to suit its
needs.

Typical data exchange between the client and the server in
the proposed attack scenario is described as follows:

1) The client requests the connection to the server, not
knowing the server is actually the attacker (i.e. step 1A
in figure 3). The attacker relays the request in its name
to the real server (i.e. step 1B in figure 3).

2) The server responds with a unique connection ID which
is passed on, unmodified, to the client, by the attacker
(steps 2A, 2B). The purpose of the attacker is to obtain
the authentication string, so relaying the connection ID
unmodified is the desired approach for the attacker.

3) The client builds the authentication string from the
connection ID received, the user’s password and the
public key for the active connection (i.e. the connection

with the attacker). In order to prevent a possible exploit
in which the attacker is able to trick the user into
embedding the legitimate server’s public key instead of
the connection public key, the hash is also encrypted
with the connection’s public key. This authentication
message is then sent back to the attacker posing as the
server.

4) The attacker at this point can decrypt the received
message and obtain the plain hash, but re-encrypting
this hash with the legitimate server’s public key would
not grant him access (steps 3A, 3B, 3C and 4), because
of the public key that is built into the hash.

The attacker is faced with the problem of recreating a hash
knowing the connection ID and the public key, and without
knowing the user’s password, which was the purpose of the
attack.

B. Replay Attack

The replay attack can be seen as a special case of a real-time
MITM Attack, one that takes place with a significant delay
between the data received and the data send by the attacker.
This attack consists of a gathering phase and a replay phase. In
the data gathering phase the attacker tries to either eavesdrop
some of the data exchanged between the client and the server,
or recreate part of the server’s interface and database in order
to trick the user into providing its credentials (i.e. phishing
attack). In the replay phase the attacker uses gathered data in
order to authenticate. This attack is very successful even if the
gathered data is encrypted or masked as the legitimate server
has no way of knowing if the connecting entity is the attacker
or the legitimate client.

The two phases work as follows:
1) The attacker is able to passively capture the data ex-

changed on a secure connection between the server
and a client (C1, C2 and C3 in figure 4). Once the
authentication string is captured the attacker can mount
the replay attack.

2) When the attacker tries to authenticate at a later time
with the obtained authentication string, will receive a
different connection ID (R1, R2, R3 in figure 4).

The challenges for the attacker is to decrypt the string,
and recompute the hash for the new connection ID, without
knowing the server’s private key and the user’s password. The
only feasible approach is to retry the connection until the
received connection ID matches the one in the hash, but this
approach can be easily avoided with a large enough connection
ID string.

V. CONCLUSIONS

Man-in-the-middle attack still represents a major security con-
cern even if successful ways to prevent it have been developed.
Most of the problems arise from the fact that the security
measures required for protection against it are hard to deploy
or may seem inconvenient, especially when usability comes
into question. While the new standards do offer high level of
protection they are not yet fully supported by all applications.

Attacker Encrypted Connection

Encrypted Connection

Server Private Key

(SPvK)

Server Public Key

(SPbK)

C1. Request Connection

C2. Receive ID
Connection ID

(ID1)

Client
Server

Intercept PASSWORD =

SPbK(Hash(PWD||ID1||SPbK))

R1. Request Connection

Attacker

R3. Send
PASSWORD =

SPbK(Hash(PWD||ID1||SPbK))

R2. Receive ID
Connection ID

(ID2)

Connection Denied
Expected PASSWORD =

SPbK(Hash(PWD||ID2||SPbK))

C3. Send
PASSWORD =

SPbK(Hash(PWD||ID1||SPbK))

AttackerAttacker

Server Private Key

(SPvK)

Server Public Key

(SPbK)

ServerConnection Denied

Figure 4: Replay attack.

This paper shows that a method exists that is able to
confirm the identity of a client involved in a client-server
secure connection using the current Internet security standard
(certificate encryption), but without the need for the client to
have its own certificate.

Several attacks were illustrated to prove the security of the
proposed concept.

ACKNOWLEDGMENTS

This paper was supported by the project ”Doctoral studies
in engineering sciences for developing the knowledge based
society-SIDOC contract no. POSDRU/88/1.5/S/60078, project
co-funded from European Social Fund through Sectoral Oper-
ational Program Human Resources 2007-2013.

REFERENCES

[1] R. Anderson, Security Engineering : A Guide to Building Dependable
Distributed Systems. Wiley, 2001.

[2] F. Hao, “J-PAKE: authenticated key exchange without PKI,” Transactions
on computational science XI, 2010.

[3] K. Paterson and D. Stebila, “One-time-password-authenticated key ex-
change,” Information Security and Privacy, pp. 1–15, 2010.

[4] J. Katz, “Efficient Cryptographic Protocols Preventing Man-in-the-
Middle Attacks,” 2002.

[5] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key exchange
secure against dictionary attacks,” in Exchange Organizational Behavior
Teaching Journal, pp. 139–155, Springer, 2000.

[6] D. Jablon, “Strong password-only authenticated key exchange,” ACM
SIGCOMM Computer Communication Review, vol. 26, no. 5, pp. 5–26,
1996.

	Introduction
	Threat model
	Authentication model
	Attack evaluation
	MITM Proxy Attack
	Replay Attack

	Conclusions
	References

